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ABSTRACT 

A class of completely unitary multiparticle models is studied. 

This class is defined by an effective Hamiltonian which allows direct 

transitions only between two and n(zZ) particle states. The non-zero 

matrix elements however are completely arbitrary. Unitarity-constrained 

elastic and production amplitudes can be solved exactly and expressed in 

simple closed forms. It turns out that the absorption functions for the 

real part of the elastic amplitude, for the imaginary part, and for the 

production amplitudes are all different. Moreover, alternate black and 

transparent zones of interaction may develop if the interaction strength 

is sufficiently strong. 
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1. INTE’_)aUUCTION 

A striking feature of high energy reactions is the constancy or the 

slight rise of total cross section over a wide energy range, a range over 

which the individual partial cross sections undergo much greater 

variations. This conspiracy to build up a constant or nearly constant 

total cross section suggests that unitarity constraints are at work. 

lt is ~therefore important to understand the nature of these constraints. 

The consequences of the unitarity relation having two particles . m 

and two particles out (hereafter called elastic unitarity) are well known. 

It can be used to prove the Froissart boundi or to test various multi- 

particle models. 283 It places a bound in the elastic amplitude at each 

impact parameter. 

In contrast, the consequences of unitarity on production amplitudes 

are not much l~nown. To the extent that production cross sections are 

bounded by the total cross section, which through elastic unitarity 

is related to the elastic amplitude, production amplitudes are already 

somewhat restricted by elastic unitarity above. Therefore, if the Born 

amplitude is too large, it must be absorbed in order not to violate this 

bound. But the exact manner how the absorption should be done is not 

clear, and there are many different ad hoc ways of doing it. 

To make further progress in this direction, presumably we should go 

beyond elastic unitarity to study the complete unitarity requirements. A 

completely general study of these is very difficult, so one has to resort 
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to simple models in order to make some headway. There are already 
‘4 : 

several models in the literature where complete unitarity is taken into 

account. 

The class of models we study here is defined by a real effective Hamilton- 

ian with direct transitions only between two and n ( 2 2) particle states. This 

presumably lacks crossing symmetry but at high energy crossing symmetry 

in the Hamiltonian may not be all that important. The main advantage oft 

this class of models is the wide range of freedom it allows. The effective 

Hamiltonian, subject to the above restrictions, is otherwise completely 

arbitrary. Since only 2- to -n (nt 2) amplitudes can be measured 

experimentally, and since all 2- to -n matrix elements of the effective, 

Hamiltonian are arbitrary, 5 there are presumably enough parameters to 

mimic every conceivable experimental amplitude. Furthermore, this 

class of models is exactly soluble and the unitarity-constrained amplitude 

can be expressed in simple closed forms. 

Mathematical solutions of the unitary amplitudes and associated 

cross sections are given in Section 2, while discussions.of the results 

are postponed to Section 3. 

2. SCATTERING AMPLITUDES AND CROSS SECTIONS 

Letzbe related to the S-matrix by S = exp(i&). z is hermitian if . 

S is unitary. We consider in this paper a class of models in which& is 

a real and symmetric matrix with non-zero (hut arbitrary) matrix elements 

only between 2- and n-(22) particle states. Spin is ignored throughout. 
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The normalizations adopted are as follows. The n-particle states 

i kik2.. . kn> with momenta ki are normalized so that the unit operator 

is 

a= ; j I krk,) dr,(k,-. k-1 , (1) 

df,= Id-y j($--) 
L J 

(2) 

whereN is unity if all the n-particles are distinct but is otherwise a 

product of factorials of the number of identical particles. Appropriate 

summations over hidden indices to ensure a completeness relation in 

(i) is understood. The T-matrix is normalized so that 

<k~-*kh 1 Pry,) = (kc* k&t+ i(~~~s’(~J(i-IPI)TIb..~3) ‘I . 
The n-particle cross section is then 

a,, = (Is? I( k,-k,lT~ p,p,$ q,,(k). i 
(4) , 

if s is the c. m. energy squared and if the phase space is 

dfJk)= ar,, (d S4( ; k;-p,-$s ) , (5) 

Similar to (3); we take out an energ;-momentum conservation factor 

from% and define H by 

With the help of the operator 



-6- NAL-PUB-73/42-TEiY 

R = ; \ I k,-. k,) dfy:~) < k,.. k,l (71 
J 

the T-matrix is given in terms of H by 

T=LTtilmT .' (8) 
J 

, (9) 
&o (Z&+1)! 

IhrT= 2 (H R)L% (-I+ 
.4 =0 (2L+2)! 

, (10) 

we express the matrix elements of H by their impact-parameter 

representations. Because of transverse momentum conservation, a 

matrix element connecting an n-particle state depends only on n-l 

independent transverse momenta r i,’ and hence n-i impact parameters 

?;. I’ If we denote the scaled longitudinal momentum 2k: /aby x i, then 

the most general real matrix element of H can be written in the form 

f,“(CL ,I, ,5> = f, t-g,, %, ) 5) 

if the initial transverse momenta are zero. If not, the corresponding 

element at high energy can be obtained from (il) by a slight rotation to 
_.~. ,y. . . ~- 

yield 

4-M l-i 1 LL:) = J f,tF,,2,.r)~~~q(;(~-%,~,).~.)kb 
I j. 

-(f3) 
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To facil,itate computation OJ the scattering amplitudes, let us divide 

H into two parts, Ii = IS’+ H2, where H2 has only the 2-to-2 matrix 

element and f? ’ has only matrix elements connecting 2 to m( >2) particle 

states. If the initial state has two particles, then it is connected through 

the operator 

h’(i) z ( H~R;-‘H/ (14) 

only to m-(2-) particle final states if i is odd (even). From (7) and (13) 

we obtain the matrix element of h’(2) to be 

(q,jlI h’(2) 1 P, Pa > = L (j&i H'I k,..k,,Lf,th)(k;-k,IH'I~~~) m 

= 2s eup( ij,J ) &i.h & , 
I 

(15) 
where p; is assumed to be zero and where 

) (16) 

6$JkS) = c+‘J a’( I: 3; lL~L)/fL(~~,~,,I)l*(~Sb*)~~~(~)~ 
(17) 

The expression dalm(k) stands fcr the longitudinal part of the phase space 

factor dpm(k): 

) Izn)'F(~,bt-(~r~~~)((~~,k",-(p,t~~~~ . 
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The slight denendcncc of kp onzi has been ignored in the computation of 

(is), an approximation which is certainly valid at large s if xi is not 

too small. 

Similarly, one can compute variqus matrix elements of h’(2L ) for 

a general E with the help of the formula 

The result is 

($&I \:(a$\ 1 t’, ‘pz, = 25 “rp $5 1 w’L’tib) tb , 

q&l Ir’mw,~Ml I#,*- !-I2 I+1 I fgz) = 

= 25, “spg;h oi%,5) $ ‘-‘d,s) fb P 
where 

if 16.51 = f,(f,s)h 9 

J . 

(19) 

WJ) 

(21) 

(22) 

With the help of these formulas, we may now calculate the matrix elements 

of 

h(i) z (&I’ H (23) 
. 

First we consider the elastic scattering amplitude. If we expand 1-I into 

a sum of 9’ and H2 in the computation of < q1q2 1 h(i) 1 p1p2>, then 
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because of the nature of h’(i) mentioned previously, we are allowed 

to have an even (odd) number of H2 if i is even (odd). For i even, 

i= 21, the number of ways we can have 2m H2 inserted into I. -m 

pairs of H’ is 
l+m 

( > 
2m . For i odd, i = 21 +I, the number of ways to 

have 2m+l H2 inserted into P -m pairs of H’ is I +m+l 

( 1 
2m+l . With the 

help of (9), (10) and (21). we can now write down the elastic scattering 

amplitude 

~r=($,(l,l~l~r~> = rp,+iT,: 
(24) 

to be 

t 

(25j 

5: =~~~<gI%~~~J~2~~~,(., I fy,) z’ 

.= 2s j i-‘&b { $ (f& i, (“:m::‘) w’“-“:k,;“‘+;r.,~’ 

. (26) 
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Similarly we can calculate the production amplitudes 

T m2 = &-%JTIP,t,)= Trnp; -t iT,q 
(27) 

by using (Ii). The result is 

-rR~ *z = &i ( kc* km I y;;;;;+~, ‘I,?* > = 

i+il ) f~~&l*i,s$.& 1, (;-+);‘“‘(g,,) ,q+ 
I 

&: = z ( It,-- km I ““(:;::::‘1 1 lIpa) = Lsr 
(28) 

= z, ( A-krnI H’I$,~,> dfa(t) cg,isr “‘~f~~~J” 1 r,pa> = ’ 
= (2; tbi J 

(29) 

with 

2 ‘= z; AC; c 
. 

(30) 
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The double sums over m and.1 in Eqs. (25), (26), (28) and (29) can 

be evaluated. We shall explain in detail how this is done for (7.5). and 

merely write down the results for the others. The double sum 

F = ;. $ Lo ( “:,” ) (,?) ,tm 
(31) 

can be evaluated by noticing that 

T, &z~= -c&G,. 
A- (w! 

Adopting the representation 

(-I:& -I La72 
(ZL)! 2ri 1 p ti2’ d2 ; 

c (32) 

where c is a circle enclosing the origin with a large enough radius to 

ensure convergence of the infinite sums below, Eq. (31) can be written 

in the form 

(33) 
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where 

Yjk,= ga &,, (; )21( “t’m” ) (g” (341 

Using instead the summation indices p = P +m and m, (34) can be summed 

to give 

8 ,,.& :(;)y (rt $,)‘t( I-$)‘] 

=- f [ ($-J+‘$)-’ t (ftvz-djl I 0 
(35) 

Finally, F may be obtained by substituting (35) into (33) and evaluating 

the integral by residue calculas. The result is 

f =++w+ t1~-~~_)l(,,+q (36) , 

where 

WA= [ ;+(J/J]IC 3. J/z . 
(37) 

Combining (25) and (36). We finally get 

Tf ‘21 5 
4J d’ b 

‘25 e i. 
1 _’ ~~~S,5)~n,(~4)t!J.(~,,I) bsuA,q 

w,(ib~+ ~-it,sl J. 
, 

(38) 
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This technique may be applied to other sums, and we obtain in this 

d+It,S) Sin rl,(l,5I - ~,(lZ,S) SinW,($$) 

bd a) + QZ,c) * 

(39) 

(40) 

$ J (jf' d'b, $4 4 ) f,Igt;g, 1l 

r 
, 

% (Pl,S) + uE;s) 
,- : 

where $ is given by (30). The real and imaginary pGts of these 

amplitudes are so simply related that we can just as easily write the 

complex amplitudes out explicitly. They are 

f,= rsij $” dfb 1 , _ ““‘~~~~~~~~~i~~-(~~) * , 
. 

(?a 

T na 
J, 

'= '~ (:I 
i ~j' Tj 

tbj'e 

-irJ,G,,r, 

) f,(~$c,5) e 

dJd,5) 
-. t 

. y&1 t a(&) 

. 
(43) 
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From (4), (17). (38)-(43), .we can calculate the production cross 

section s,(m> Z), the total, inelastic cross-section u, the total cross 

section u 
T’ 

and the elastic cross section ue. The result is 

(45) 

cr= 2 tb. I- J i W&,5) m w,1r,s,, + wt,~) m da) qt.5, + W~5) i I 
(46) 

We know that the elastic amplitude is almost purely imaginary at high 

energy. It is therefore instructive to look at the special case when v = 0. 

in that limit, the elastic amplitude is purely imaginary and the production 

amplitude is completely real. We have in fact 
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7 a* 
= 2si $I.’ = J 4. b [ I- & o&)] 

I 

Tms= j ($;“bj +i”“‘) j&,rc,s) si’ti;;; 
, , 

%,= l tb(t;;@')i [ ;A &.&,sI]' , 

6,= ‘J’ 1 aid.= b I- bo, w&]~ 

I 

f 

, 

(48) 

(49) 

(50) 

(51) 

(52) 

.- 

(53) 

The meaning of these equations will be discussed in the next Section. 
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3. DISCUSSIONS 

In view of the smallness of the real part of the elastic scattering 

amplitude at high energies, we shall concentrate most of our discussions 

in the v = 0 limit. The opaqueness .D (3, s), defined by 6 

1 
~$.r: 

za = 25i k rltb [ f- ;nt”s’] 

is given by (48) to be 

R&) = - &5 w Ed J . (5% 

Thus the real part of R is always positive, which is a well known 

consequence of elastic unitarity. So are Eqs. (5i) - (53), and we shali 

therefore not discuss them any further. 

In the weak interaction limit, w <<i , (55) becomes 

R(h) = 0%,5)/Z ; ( WC4 f > , 

which according to (16) receives additive contributions from different 

channels. When the interaction is not weak, although different channels 

2 still contribute additively to o, , they no longer do so to D. This is a 

consequence of the continuous creation.and absorption of multiparticle 

states dictated by the unitarity requirements in the model. 

To see what unitarity does, to multiparticle cross sections, let us first 

look at Eq. (50). We can extract from it the internal multiplicity distribu- 
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tion function7 Pm, which measures the probability density of finding m 

particles at impact parameter; : 

-Pm = IJ’, (9,5)/ l.a,s) . (57) 

This expression is easy to understand in the weak coupling limit, when 

(See (SO) and (51)) ui’ (b, s)/Z is the cross sectiun density for producing 

m particles at impact parameter b, 
2- 

andw (b, s) is the total inelastic 

cross section density there.. Their ratio is therefore the probability 

density, as indicated by (57). What Eq. (50) goes beyond this to say 

is that no matter how strong the interaction is, the ratio on the right hand 

side of (57) is still the probability density. This simplification is a result 

of the assumption that direct m -to n-particle conversions for m> 2 are 

absent in the interactions. 

Going beyond multiplicity distributions, we see from (11) and (49) 

that the m-particle amplitude differs from its Born term only by the 

_ multiparticle absorption factor sine 6, s)/w (5, s). There are two things 

to notice here. The effective impact parameter l?, given by (3O).is 

determined simply by anguiar momentum conservatim. It is therefore 

a general feature independent of our specific model assumptions. Secondly, . 

the absorption function sinw /w here is different from the absorption 

function cosw in the imaginary part of the elastic amplitude, Eq; (48). 

It is true that they both have the same general character, that they are 
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bounded by 1 and tend to unity as G-0. Moreover, if 0,~~s ~12, they 

both decrease monotonically as o increases, with sinw /w always larger 

than cosw . But beyond rr/2, both of them oscillate out of phase with each 

other. 

It is also interesting to note that the real part of the elastic scatter- 

ing amplitude has an absorption function that is the ~arithmetic mean of 

the two: (cos o + sin w /~)/2. This can beg obtained by expanding Eq. (30) 

to first power in v. 

Finally, let us consider in more detail the behavior of opaqueness. 

If f, vanishes at large impact parameter, so will w (Eqs.(lb) and (17)), 

and therefoer n (Eq. (55)). This is to be expected. When the impact’ 

parameter decreases from infinity, S2 increases and the interaction 

region becomes more and more opaque. If the interaction is not strong 

enough to make o exceed n/2 anywhere, then SZ isa positive monotomic 

function of 0, and the interaction’region gets more opaque wherever the 

effective interaction is stronger. This corresponds to the usual picture 

of geometrical models. However, if the interaction becomes very strong 

and exceeds r/2, then although w (%, s) may still be a monotonic function of 

b, Q$, s) will develop alternate black and transparant zones because of 

(55). Such a zebra-like structure is very interesting because it means 

that in principle there is an impact parameter (e. g., o = 2~) within the 

overall interaction range that we can aim at where no interaction what- 

&ever occurs. At present energies, presumably the interaction is net 
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strong enough for zebra zones to occur. But with the increase of , 

total cross section and thereby the indication of interactions getting 

stronger for larger energies, it is not completely ruled out that such 

zebra zones may develop at ultra high energies. 

In closing, we should also mention that if the real part of the elastic 

scattering amplitude is taken into account, v # 0, one changes the 

quantitative but not the qualitative features discussed above. For 

example, Eq. (55) would be slightly modified so that a completely black 

interaction region (Q = m) can no longer occur. 

,.I 
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